
Building BSD
in meta mode

Simon J. Gerraty

Juniper Networks, Inc.

BSDCan 2011

Imagine something very witty here

Agenda
Introduction

History

Desirable build features

Some issues

Meta mode

Building FreeBSD current

Introduction
building BSD for multiple architectures, in a reliable and efficient manner.
some lessons learned from evolution of Junos build.

produces 3 times the Gb/hour of FreeBSD universe build.
still plenty of room for improvement

building with bmake in meta mode.
uses .meta file idea from John Birrell's build project for FreeBSD

Teaser
Building /bin/sh in FreeBSD current, in a clean tree:

$ mk destroy
(cd /c/sjg/work/FreeBSD/current/src && rm -rf /c/sjg/work/FreeBSD/current/obj/i386)
$ time mk -j12 -C bin/sh
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/bin/sh...]
Checking /c/sjg/work/FreeBSD/current/src/stage for i386 ...
[Creating objdir /c/sjg/work/FreeBSD/current/obj/i386/stage...]
Building /c/sjg/work/FreeBSD/current/obj/i386/stage/stage_include
Checking /c/sjg/work/FreeBSD/current/src/include for i386 ...
Checking /c/sjg/work/FreeBSD/current/src/usr.bin/rpcgen for host ...
Checking /c/sjg/work/FreeBSD/current/src/include/rpcsvc for i386 ...
[Creating objdir /c/sjg/work/FreeBSD/current/obj/freebsd9-i386/usr.bin/rpcgen...]
Building /c/sjg/work/FreeBSD/current/obj/i386/include/.dirdep
...

it's hard to make a build log interesting.

Teaser cont...
Building /c/sjg/work/FreeBSD/current/obj/i386/lib/libc/stage_libs
Checking /c/sjg/work/FreeBSD/current/src/lib/libc/Makefile.depend.i386: .depend
Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/parser.o

Building /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/sh
Updating .depend: builtins.c.meta mkinit.o.meta mknodes.o.meta
Checking /c/sjg/work/FreeBSD/current/src/bin/sh/Makefile.depend.i386: .depend
 67.03 real 196.12 user 170.12 sys

Things to note:

objdirs were created automatically
keeping objdirs in a separate tree facilitates cleaning

no make depend
everything ran in parallel, but in the correct order
leaf dirs visited directly
Makefile.depend*

A quick look at Makefile.depend
Autogenerated - do NOT edit!
DEP_RELDIR := ${_PARSEDIR:S,${SRCTOP}/,,}
DEP_MACHINE := ${.PARSEFILE:E}
DIRDEPS = \
 include \
 lib/libc \
 lib/libedit \
 lib/ncurses/ncurses \

SRC_DIRDEPS = \
 bin/kill \
 bin/test \
 usr.bin/printf \

.include <dirdeps.mk>

.if ${DEP_RELDIR} == ${_DEP_RELDIR} && !exists(.depend)
local dependencies - needed for -jN in clean tree
arith_yylex.o: syntax.h
...
.endif

Some definitions
.CURDIR: the value returned by getcwd(3) when make first starts

.OBJDIR: the directory make is in when it starts building things

MACHINE: the specific machine or cpu that we are building for

MACHINE_ARCH: the architecture that matches ${MACHINE}
mips for any of xlr, octeon, ...

.OBJDIR
Make's predilection for finding an object dir causes confusion for those unfamiliar with it.

The basic algorithm is (in Bourne shell):

for __objdir in ${MAKEOBJDIRPREFIX}${.CURDIR} \
 ${MAKEOBJDIR} \
 ${.CURDIR}/obj.${MACHINE} \
 ${.CURDIR}/obj \
 ${.CURDIR}
do
 if [-d ${__objdir} -a ${__objdir} != ${.CURDIR}]; then
 break
 fi

done

Automated .OBJDIR
With bmake, makefiles can set .OBJDIR, this makes automated objdir creation possible (from
auto.obj.mk):

.if !defined(NOOBJ) && ${MKOBJDIRS:Uno} == auto
Use __objdir here so it is easier to tweak without impacting
the logic.
__objdir?= ${MAKEOBJDIR}
.if ${.OBJDIR} != ${__objdir}
We need to chdir
.if !exists(${__objdir}) && \
 (${.TARGETS} == "" || ${.TARGETS:Nclean*:N*clean:Ndestroy*} != "")
This will actually make it... Mkdirs is in sys.mk
__objdir:=${__objdir:!umask ${OBJDIR_UMASK:U002}; \
 ${ECHO_TRACE} "[Creating objdir ${__objdir}...]" >&2; \
 ${Mkdirs}; Mkdirs ${__objdir}; echo ${__objdir}!}
.endif
This causes make to use the specified directory as .OBJDIR
.OBJDIR: ${__objdir}
.endif
.endif

more definitions
SB: names the directory where mk found .sandbox-env

SB_OBJROOT: usually ${SB}/obj/, if ${SB} is on NFS,
${SB_OBJROOT} may be a symlink to local storage. We typically set OBJTOP to this with
${MACHINE} appended.

HOST_OBJTOP: when building things for the host
(the machine the build is running on), we use an object directory that uniquely identifies it. We
append ${HOST_TARGET} (eg. freebsd7-i386) to ${SB_OBJROOT}.

RELDIR: relative path from SRCTOP to .CURDIR.

bmake modifiers
NetBSD's make has a plethora of variable modifiers, several come from OSF Development Environment
(ODE):

:@temp@string@

an in-line loop construct, which unlike .for is not evaluated when read, and does not limit
expansion to the loop iterator. Each word of the variable is assigned to temp and then string is
expanded. Insanely useful

History
The traditional BSD build looked something like:

make obj
make includes
make depend
make libs
make all
make install

in some cases make dependall coalesced the depend and all steps.

Multiple tree walks, using SUBDIR to visit next layer. Originally necessary to kept memory footprint
reasonable.

Top-level Makefile can be big.

The Junos build
Juniper routers typically have separate CPU's for control and data planes.

control plane is basically BSD
data plane is proprietary

where the cool ASICs are
until very recently had its own build (gmake)

Junos 4.x (2000)
Originally Junos was built as a few packages added to a stock FreeBSD 2.x install. An experimental build
introduced:

concept of a sandbox and the commands:
mk to launch make after conditioning the environment
mksb to prepare a sandbox and checkout the sources.
workon to run a shell within the sandbox

use of bmake
single src tree for entire system

ability to checkout and build subsets
no tree walks - visit leaf dirs directly based on dependencies

Junos 5.0 (2001)
Migration to FreeBSD 4.x and to ELF, build overhaul:

headers included from their src dir (no make includes)
use ${SRC_lib*}/h as location for public headers
dpadd.mk automatically adds correct -I's

libraries linked from their objdir (no make install)
dpadd.mk automatically adds correct -L's

software packaged as ISO images
new simpler top-level makefiles

visit leaf dirs directly based on dependencies
use autodep.mk (no make depend)

Junos 7.0 (2004)
Maintainability improvements

new set of top-level makefiles
broken out into function units depend, cvs, build etc.
each component easier to understand

objdir creation automated with auto.obj.mk
automatically derrive the tree dependencies from manifest files

stored in CVS
leveraged for subset checkout

backing sandbox support
digitally sign packages

Junos 9.3 (2008)
The tree had grown considerably, as had the number of architectures supported.

removed dependency information from CVS

generate dynamically per ${MACHINE}
each subtree can come from different repository/SCM

Today
Completed first stage of migration to meta mode.

data plane gmake build converted to bmake in meta mode
better debugging
better parallelism
more accurate dependencies

rest of build can also run in meta mode
old build used to bootstrap Makefile.depend*
bulk of the tree just works
some major makefiles need re-work to avoid circular dependencies

Desirable build features
Some features have proven beneficial over long term

separating sources and objects
automated objdir creation
automated dependency collection
directory based dependencies
building in parallel
captive toolchains

Separating sources and objects
while some people may like their objects and src in the same directory we don't give them that option
(any more ;-)

default ${.CURDIR}/obj/ or ${.CURDIR}/obj.${MACHINE}/ insufficient

MAKEOBJDIRPREFIX easy - but ugly

bmake allows applying modifiers to MAKEOBJDIR

$ export MAKEOBJDIR='${.CURDIR:S,${SRCTOP},${OBJTOP},}'

mk objlink still handy but ./obj/ ignored by build

Separating src and objects cont.
Well defined SRCTOP and OBJTOP simplify things.

One can simply assert:

CRYPTOBJDIR= ${OBJTOP}/secure/lib/libcrypt

rather than guess (wrongly):

.if exists(${.CURDIR}/../../lib/libcrypt/obj)
CRYPTOBJDIR= ${.CURDIR}/../../lib/libcrypt/obj
.else
CRYPTOBJDIR= ${.CURDIR}/../../lib/libcrypt
.endif

Automated dependency collection
autodep.mk leverages gcc -M* to collect dependency information as a side effect of building.

uses ${.PREFIX}.d so .SUFFIX rules work

newer auto.dep.mk uses .d.${.TARGET} to avoid contention
requires compiler support (eg. gcc)

bmake automatically ignores stale dependencies read from .depend
[re]moved headers cause target out-of-date not failure

Directory based dependencies
Allow the top-level build to visit leaf dirs directly

tree walks are expensive (especially on NFS)
may be impossible to adequately order the build steps without resorting to phases like make
includes and make libraries.

leverage DPADD information in makefiles.
with SRCTOP and OBJTOP it is easy to derive src dir from objdir, dpadd.mk does the work.

dpadd.mk
Given:

LIBFOO ?= ${OBJTOP}/lib/libfoo/libfoo.a

If ${LIBFOO} is referenced in DPADD, dpadd.mk computes:

OBJ_libfoo = ${LIBFOO:H}
SRC_libfoo ?= ${OBJ_libfoo:S,${OBJTOP},${SRCTOP},}
.if exists(${SRC_libfoo}/h)
INCLUDES_libfoo ?= -I${SRC_libfoo}/h
.else
all bets are off
INCLUDES_libfoo ?= -I${OBJ_libfoo} -I${SRC_libfoo}
.endif

dpadd.mk cont.
Since accurate dependencies in makefiles are key, we use DPLIBS:

DPLIBS += ${LIBFOO}

is equivalent to:

DPADD += ${LIBFOO}
LDADD += -lfoo -L${OBJ_libfoo}

If ${LIBFOO} in any of SRC_LIBS, DPADD or DPLIBS:

CFLAGS += ${INCLUDES_libfoo}

dpadd.mk cont.
Gather tree dependencies by recursively visiting dirs doing:

$ mk -C bsd/usr.bin/login dpadd
DPADD_bsd/usr.bin/login = \
 bsd/lib/libc \
 bsd/lib/libcrypt \
 bsd/lib/libmd \
 bsd/lib/libpam/libpam \
 ...

${P}bsd/usr.bin/login: ${DPADD_bsd/usr.bin/login:S,^,${P},}

Obviously this is expensive (a tree walk), but typically only done after updating the tree, editing makefiles

or manifests.

Building in parallel
there's no such thing as building too fast

building in parallel soaks up otherwise wasted CPU

going fast doesn't matter if the results are incorrect:

this works fine in compat mode
but likely not in jobs mode
LIB = fool

SRCS = parser.c file1.c file2.c file3.c

parser.c: parser.y
 ${YACC} -d -o ${.TARGET} ${.IMPSRC}
 mv t.tab.y ${.TARGET:T:R}.h

.include <bsd.lib.mk>

Building in parallel cont.
First fix attempt might be:

wrong: this can cause YACC to be run twice - at the same time!
parser.c parser.h: parser.y
 ${YACC} -d -o ${.TARGET:T:R}.c ${.IMPSRC}
 mv t.tab.y ${.TARGET:T:R}.h

file1.o: parser.h

take two:

wrong: likelihood of circular dependencies
parser.h: parser.c
parser.c: parser.y
 ${YACC} -d -o ${.TARGET:T:R}.c ${.IMPSRC}
 mv t.tab.y ${.TARGET:T:R}.h

file1.o: parser.h

Building in parallel cont.
This is more like it:

yacc run once only
parser.h: parser.y
 ${YACC} -d -o ${.TARGET:T:R}.c ${.IMPSRC}
 mv t.tab.y ${.TARGET}

specified dependencies consistent with those
captured from gcc -M
parser.c: parser.h

file1.o: parser.h

by default we do not run leaf makefiles in jobs mode
can set USE_JOBS=yes in makefiles known to work
will flip that with meta mode

Captive toolchains

compilers and similar toolchains, used a lot, changed rarely
we need to be able to reproduce a build many years later
tools team qualify new compiler, post it, done
build checks for toolchain changes
NetBSD's build provides support for externally maintained cross-toolchains via
EXTERNAL_TOOLCHAIN

Some issues
Some ideas scale better than others
Some hacks live too long
Periodic overhauls needed
Be prepared to revisit decisions

Too many -I's and -L's
including headers from their src dir and linking libs from objdir solved a problem but

too much of a good thing can be bad
makes it more difficult to spot name conflicts
most #include "" usage is wrong

using meta mode we can address the original problem differently
automated staging

Too much complexity
Junos build has more than trippled in size since 7.0 when the current top-level makefiles introduced
hybrid architectures add more inter-machine dependencies
leaf makefiles still simple, but top-level complexity has increased

Too much complexity cont.
Run a sub-make with MACHINE and MACHINE_ARCH set appropriately.
_BUILD_ARCH_USE: .USE .PHONY .MAKE
 @echo "[Building __${.TARGET} for ${@:E} ...]"
 @(cd ${.CURDIR} && MACHINE=${.TARGET:E} \
 MACHINE_ARCH=${MACHINE_ARCH.${.TARGET:E}} \
 ${.MAKE} __$@)

.for m in ${ALL_MACHINE_LIST}

.if ${MACHINE} == $m
build_arch.$m: __build_arch.$m
make sure this exists
__build_arch.$m:
.else
build_arch.$m: _BUILD_ARCH_USE
.endif
.endfor

all: build_arch.i386 build_arch.mips

__build_arch.i386: lots-of-stuff
__build_arch.mips: lots-of-stuff

Too much complexity cont.
build_arch.* can be easily missused:

__build_arch.${MACHINE}: lots-of-stuff

this works ok for building just some-thing or and-another

some-thing: build_arch.abc
__build_arch.abc: one-thing and-another
and-another: build_arch.xyz
__build_arch.xyz: lots-more-stuff

the above causes problems for this
every-thing: ${ALL_MACHINE_LIST:%=build_arch.%}

dirdeps.mk allows easy (and safe) mixing of directory and machine dependencies

Manual maintenance is unreliable
not all C programmers are build geeks

basic rules for writing leaf makefiles:

1. Do not put anything in your makefile that you don't need
2. Do not put anything in your makefile that you cannot explain the
 need for. Ie. if you cannot explain it, you don't need it, remove it.
3. Do not cut/paste anything from your friend's makefile (see #1).

Note: #2 does not mean that you should remove everything from an
existing makefile that you don't understand the first time you look at it.

makefiles (like C code), can accrete dependencies which in many cases are unnecessary

the less humans need to maintain, the better

A top-level build needed
Junos build uses lots of hosttools; code generators etc.
some built for host and target
top-level is where MACHINE gets changed
thus, some form of top-level build is almost always needed
top-level build requires tree dependencies to be collected
none of this is necessary with dirdeps.mk

Insufficient parallelism
8 years ago just running top-level makefiles in parallel consumed build servers

too easy to write leaf makefiles which don't work in parallel
default leaf makefiles to compat mode

build machines have gotten much faster, but build is more complex
for packaging reasons, one machine can depend on products of another

15min load average is a useful clue

Introducing Meta Mode
create a .meta file for each target
.meta file collects information about the target

the expanded command line
command output
interesting system calls

.meta files first introduced in John Birrell's build for FreeBSD.
leveraged DTrace to collect syscall data
we asked John to write a simple kernel module filemon
build required all new makefiles

Meta mode cont.
bmake + .meta files allows easy transition

Junos build has been meta mode capable for over a year with almost no changes
converting data plane (gmake) build was first priority

Rationale
aid automated capture of dependency information

help optimize build performace
improve build reliability

optimizing build means
do as little as possible
do it in parallel
but do it correctly!

meta mode helps all the above

avoid make depend
saves a lot of time
requires better makefiles for parallel building

capture local dependencies to Makefile.depend for clean tree build
filemon works for all targets not just gcc

automatically catches toolchain changes

avoid unnecessary dependencies
In meta mode, bmake can compare expanded commands to know if there is a change. Thus
dependencies like:

if any of the makefiles have changed we need to regenerate
this - "just in case"
generated.h: ${.MAKE.MAKEFILES:N.depend}
${OBJS}: generated.h

can be skipped.

use DPADD to bootstrap DIRDEPS

entries in DPADD but not DIRDEPS were unnecessary.

tree walks don't always cut it
ideally, build tree in a single pass
bsd.subdir.mk and walking tree is inefficient

may not be possible to express dependencies between leaf directories
need phases like make includes, make depend

Junos build visits leaf dirs directly based on tree dependencies
meta mode supports that, more efficiently and generically

Building in meta mode
enabled by the word meta in .MAKE.MODE which can be set by makefile

meta.sys.mk included by sys.mk, does:

.if ${.MAKE.LEVEL} == 0
make sure dirdeps exists and do it first
all: dirdeps .WAIT
dirdeps:
.endif
META_MODE += meta verbose
.MAKE.MODE ?= ${META_MODE}

Writing .meta files
for each target, a .meta file called ${.TARGET}.meta is created
if target is .PHONY, .MAKE or .SPECIAL (eg. .BEGIN, .END, .ERROR), then a .meta file is
not created unless the target is also flagged .META
never created if target flagged .NOMETA
skip .meta if .OBJDIR == .CURDIR and curdirOk=yes not in .MAKE.MODE
if target not in ${.OBJDIR}, replace all / with _ in meta file name

Meta file content
expanded command line(s), prefixed with CMD
current directory prefixed with CWD
target, prefixed with TARGET
command output preceded by line -- command output --

this is useful for error handling
syscall data collected from filemon preceded by line -- filemon acquired metadata
--
append the name of the .meta file to variables .MAKE.META.CREATED and
.MAKE.META.FILES
if meta verbose mode expand and print .MAKE.META.PREFIX which defaults to the full path of
the target.

filemon
kernel module replaces use of DTrace

available in FreeBSD and NetBSD

for each syscall, an entry of the form:

tag pid data
data is usually a pathname, tag is one of:
C chdir
D unlink
E exec
F [v]fork
L [sym]link
M rename
R open for read
S stat
W open for write
X exit

bmake mainly interested in C E and R entries

Reading .meta files
skipped if target already considered out-of-date
use -dM to see why bmake thinks target out-of-date
compare expanded commands

unless told not to (.NOMETA_CMP)
or commands use ${.OODATE}

compare mtime of files Read or Executed against target
if generated file within ${.MAKE.META.BAILIWICK} but outside ${.OBJDIR} is missing,
target is out-of-date

Performance
lots of extra stat(2) calls
nothing to be done is worst case

adds about 1 second to libc
incentive to avoid unnecessary #include

otherwise comparable to using autodep.mk
meta2deps currently a shell script
when entire build runs in meta mode, expect significantly better parallelism

Error handling
since 2001 sisyphus (a tindebox-like system) builds Junos, analyzes breaks, identifies cause and
fingers the guilty
currently uses wrapper scripts to re-run compiler to capture errors and dependencies
meta mode makes this simpler

on failure .ERROR_META_FILE is set to path of failed .meta file
.ERROR target copies failed .meta file to $SB/error/
.meta file contains everything sisyphus needs for failure analysis

Error example
Meta data file /h/obj/NetBSD/5.X/usr.bin/make/make.o.meta
CMD cc -O -DMAKE_NATIVE -c /amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/src/usr.bin/make/make.c
CWD /h/obj/NetBSD/5.X/usr.bin/make
TARGET make.o
-- command output --
/amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/src/usr.bin/make/make.c:2:21: \
 error: no-such.h: No such file or directory
*** Error code 1
-- filemon acquired metadata --
filemon version 2
Target pid 5089
V 2
E 5175 /usr/bin/cc
R 5175 /usr/lib/libc.so.12
W 5175 /var/tmp//cceNCjUd.s
E 5436 /usr/libexec/cc1
R 5436 /usr/lib/libc.so.12
R 5436 /amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/src/usr.bin/make/make.c
R 5436 /usr/include/sys/cdefs.h
R 5436 /usr/include/machine/cdefs.h
R 5436 /amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/src/usr.bin/make/make.h
R 5436 /usr/include/sys/types.h
...
R 5436 /amd/mnt/swift/host/c/sjg/work/NetBSD/5.X/src/usr.bin/make/job.h
X 5436 1
D 5175 /var/tmp//cceNCjUd.s
X 5175 1
Bye bye

Extracting dependencies
bmake simply uses .meta files to better know when a target is out-of-date
bmake tracks .meta files via .MAKE.META.FILES and .MAKE.META.CREATED
allows makefiles such as meta.autodep.mk to post-process .MAKE.META.FILES to gather
tree wide dependencies.
this process is greatly simplified by keeping objdirs out of the src tree

post-processing meta files
Meta data file /c/sjg/work/FreeBSD/current/obj/i386/bin/sh/var.o.meta
...
-- filemon acquired metadata --
...
E 16111 /bin/sh

...
R 16112 /c/sjg/work/FreeBSD/current/src/bin/sh/var.c
W 16113 var.o
R 16112 /c/sjg/work/FreeBSD/current/obj/stage/i386/usr/include/sys/cdefs.h
R 16112 /c/sjg/work/FreeBSD/current/obj/stage/i386/usr/include/unistd.h
...
R 16112 /c/sjg/work/FreeBSD/current/obj/stage/i386/usr/include/stddef.h
R 16112 /c/sjg/work/FreeBSD/current/src/bin/sh/expand.h
R 16112 ./nodes.h

any file read or executed from an objdir other than .OBJDIR idendifies a directory which must be
built before .CURDIR, (DIRDEPS)
any file read from the the src tree outside of .CURDIR identifies a directory which must exist,
(SRC_DIRDEPS)

mapping objdir to src dir
when linking libraries from their objdir, the mapping to src dir is trivial:

SRC_libfoo = ${OBJ_libfoo:S,${OBJTOP},${SRCTOP},}

when using headers and libraries which have been staged, help is needed:

$ cd /c/sjg/work/FreeBSD/current/obj/stage/i386/usr/include
$ ls -l unistd.h*
-rw-r--r-- 2 sjg wheel 18731 Mar 2 18:37 unistd.h
-rw-r--r-- 92 sjg wheel 13 Apr 3 14:53 unistd.h.dirdep
$ cat unistd.h.dirdep
include.i386

the .dirdep file contains the DIRDEPS entry needed.

Makefiles
majority of leaf makefiles just work
some minor changes to bsd.*.mk
new makefiles meta.*.mk, dirdeps.mk and gendirdeps.mk
top level makefiles can be very simple
Makefile.depend* is most visible change

Makefile.depend
collects DIRDEPS, SRC_DIRDEPS and local dependencies for each directory
can be maintained in SCM
use Makefile.depend.${MACHINE} if cross-building supported.

One build product per directory
building multiple things is ok but
each directory/makefile should do the same thing every time
only collect dependencies when doing default target

Separate MACHINE independent activity
this is an optimization (ie. optional)
when cross building for lots of architectures
doing code generation and building host tools once helps

meta.autodep.mk

post-processing .meta files can be expensive, skip if possible

if .MAKE.META.CREATED is not empty, we have work to do

process .MAKE.META.FILES:

.END: gendirdeps

_DEPENDFILE := ${.CURDIR}/${.MAKE.DEPENDFILE:T}
gendirdeps: ${_DEPENDFILE}

the double $$ defers initial evaluation
${_DEPENDFILE}: $${.MAKE.META.CREATED} ${.PARSEDIR}/gendirdeps.mk
 @echo Updating $@: ${.OODATE:T:[1..8]}
 @(cd ${.CURDIR} && \
 SKIP_DIRDEPS='${SKIP_DIRDEPS:O:u}' \
 ${.MAKE} __objdir=${_OBJDIR} -f gendirdeps.mk $@ \
 META_FILES='${.MAKE.META.FILES:T:O:u}')

gendirdeps.mk
runs meta2deps.sh to extract interesting directories
things in ${SRCTOP}/* are SRC_DIRDEPS
things in ${OBJTOP}/* are DIRDEPS
things in objdirs other than ${OBJTOP} (ie. build for other ${MACHINE}) are qualified DIRDEPS.

meta.stage.mk
links or copies files into staging locations
puts .dirdep file next to each staged file, so mapping to src directory not lost
multiple STAGE_SETS with own STAGE_DIR
STAGE_AS_SETS for renaming while staging
provides various simple targets stage_incs, stage_libs, stage_symlinks and generic
stage_files and stage_as_files

dirdeps.mk
deals with DIRDEPS
only interesting to initial instance of bmake (${.MAKE.LEVEL} == 0)
conceptually simple

initial bmake reads ${.CURDIR}/Makefile.depend.${MACHINE} gets DIRDEPS
generate dependencies on each ${DIRDEP} for ${DEP_RELDIR}
process Makefile.depend* from each ${DIRDEP}
repeat

dirdeps.mk cont.
Given:

DIRDEPS = lib/libc include ...

then (ignoring the complication of other machines):

always qualified
_build_dirs := ${DIRDEPS:@d@${SRCTOP}/$d.${MACHINE}@}

${SRCTOP}/${DEP_RELDIR}.${MACHINE}: ${_build_dirs}

.for f in ${_build_dirs:@d@${d:R}/${.MAKE.DEPENDFILE:T}@}

.if ${.MAKE.MAKEFILES:M${f}} == ""

.-include <$f>

.endif

.endfor

Supressing DIRDEPS
Use -DNO_DIRDEPS to supress DIRDEPS outside of .CURDIR:

$ mk-host -DNO_DIRDEPS -C external/bsd/atf/tests

builds and runs all unit tests in that subtree without checking anything else.

meta.subdir.mk
we do not tree walk
may still want to launch a build in src/usr.bin/
set initial DIRDEPS based on result of find ${SUBDIR} if no Makefile.depend* exists in
.CURDIR

BUILD_AT_LEVEL0
our data plane developers expect mk to DTRT regardless of target machine(s) appropriate to
.CURDIR
this can be simplified by never building anything in the 0th instance of bmake, so we set
BUILD_AT_LEVEL0 = no
no means sub-makes used to build .CURDIR
yes means sub-makes only used to build .CURDIR for other machines

Building kernels
BSD kernel build does not provide a src dir per kernel to capture dependencies

jnx.kernel.mk lets us build kernels anywhere:

for each kernel we have:
${KERNEL_NAME}/config/
${KERNEL_NAME}/kernel/
and possibly?
${KERNEL_NAME}/modules/*
#
config/ is where config(8) is run
both kernel/ and modules that need to link with it
can depend on config/
If there are kernel specific modules (which do not link into it)
they could be built under modules/ (one directory each of course)
#
For example:
bsd/kernels/JUNIPER/config
bsd/kernels/JUNIPER/kernel
#
Because config(8) produces a Makefile which we want to use,
the makefiles in config/ and kernel/ above should be called 'makefile'.

Top-level makefiles?
Given a collection of directories pkgs/*/ that contain little more than Makefile.depend*, the top-
level makefile need be no more complex than:

DIRDEPS = ${.TARGETS:Nall:@d@pkgs/$d@}

.include <dirdeps.mk>

.for t in ${.TARGETS:Nall}
$t: dirdeps

.endfor

Building FreeBSD current
test case for generic meta.*.mk and dirdeps.mk
want to be able to easily cross-build stock FreeBSD
minimize changes to FreeBSD

Setup
Install mk-files in $SB/src/mk/ and set MAKESYSPATH=$SB/src/mk:$SB/src/share/mk we
use:

sys.mk
auto.obj.mk generate objdirs automatically
obj.mk linked as bsd.obj.mk
meta.*.mk
dirdeps.mk
gendirdeps.mk

and some local additions:

sys/FreeBSD.mk includes ../../share/mk/sys.mk
local.sys.mk tweaks to blend everything
local.dirdeps.mk enable staging
local.libnames.mk link libs from stage tree

bmake vs FreeBSD make
FreeBSD make has :U and :L modfiers that conflict but not used

bmake requires explicit .NOPATH in some cases. Generally:

.NOPATH: ${CLEANFILES}

also NetBSD's bsd.own.mk flags all standard targets as .PHONY

dirdeps.mk requires lots of bmake features

Staging headers and libs
like make install as you go
no need to be root
minor changes to bsd.lib.mk, bsd.incs.mk to leverage meta.stage.mk

Debugging
bmake -dM will say why meta mode decides out-of-date

sys.mk supports enabling make flags in certain dirs:

DEBUG_MAKE_FLAGS=-dM DEBUG_MAKE_DIRS='*/libc' mk

Sparse tree
dirdeps.mk does not mind if a directory is missing
makes it easy to re-use pre-built tree as backing sb
Junos SDK leverages this

Conclusion
In many ways meta mode simply builds on the aspects of our build which have worked well.

At the same time, it provides us with a simple solution to some rather complex problems.

We expect others can benefit in the same way.

URLs:

http://www.crufty.net/help/sjg/bmake.htm
ftp://ftp.netbsd.org/pub/NetBSD/misc/sjg/bmake-20110505.tar.gz
ftp://ftp.netbsd.org/pub/NetBSD/misc/sjg/mk-20110505.tar.gz

Questions
Q&A

Author: sjg@juniper.net
Revision: $Id: building-bsd-slides.txt,v 1.7 2011/05/05 18:08:43 sjg Exp sjg $
Copyright: Juniper Networks, Inc.

mailto:sjg@juniper.net

